Lexicographic Shellability Statistics

Alexander Lazar

KTH

June 2022

Joint with Joseph Doolittle (TU Graz) and Bennet Goeckner (U. San Diego)

<u>Ordered simplicial complex</u> Δ_{\prec} : simplicial complex Δ along with an ordering $v_1 \prec v_2 \prec \cdots \prec v_n$ of its vertices.

<u>Ordered simplicial complex</u> Δ_{\prec} : simplicial complex Δ along with an ordering $v_1 \prec v_2 \prec \cdots \prec v_n$ of its vertices.

Faces of Δ_{\prec} are ordered sets: $F = \{v_{i_1} \prec \cdots \prec v_{i_{k+1}}\}.$

<u>Ordered simplicial complex</u> Δ_{\prec} : simplicial complex Δ along with an ordering $v_1 \prec v_2 \prec \cdots \prec v_n$ of its vertices.

Faces of Δ_{\prec} are ordered sets: $F = \{v_{i_1} \prec \cdots \prec v_{i_{k+1}}\}.$

Theorem (Björner)

Let Δ be a pure simplicial complex. Then Δ is the independence complex of a matroid if and only if, for every order \prec of the vertices of Δ , the lexicographic order of the facets of Δ_{\prec} is a shelling order. Shelling order: A total order F_1, \ldots, F_k of the facets of Δ such that $\overline{F_j} \setminus (F_1 \cup \cdots \cup F_{j-1})$ has a unique minimal element for all j > 1.

<u>Shelling order</u>: A total order F_1, \ldots, F_k of the facets of Δ such that $\overline{F_j} \setminus (F_1 \cup \cdots \cup F_{j-1})$ has a unique minimal element for all j > 1.

Shelling order: A total order F_1, \ldots, F_k of the facets of Δ such that $\overline{F_j \setminus (F_1 \cup \cdots \cup F_{j-1})}$ has a unique minimal element for all j > 1.

Question: What can we say about complexes where some, but maybe not all, total vertex orders make lex-order into a shelling order?

Motivation

• Simon's conjecture: The *d*-skeleton of the (n-1)-simplex is extendably shellable.

- Simon's conjecture: The *d*-skeleton of the (n-1)-simplex is extendably shellable.
 - Coleman–Dochtermann–Geist–Oh: revlex order is a shelling order ⇒ shelling of Δ can be extended to shelling of the *d*-skeleton of the (*n*−1)-simplex.

- Simon's conjecture: The *d*-skeleton of the (n-1)-simplex is extendably shellable.
 - Coleman–Dochtermann–Geist–Oh: revlex order is a shelling order ⇒ shelling of Δ can be extended to shelling of the *d*-skeleton of the (*n*−1)-simplex.
- Quasi-matroidal classes (Samper)

- Simon's conjecture: The *d*-skeleton of the (n-1)-simplex is extendably shellable.
 - Coleman–Dochtermann–Geist–Oh: revlex order is a shelling order \implies shelling of Δ can be extended to shelling of the *d*-skeleton of the (n-1)-simplex.
- Quasi-matroidal classes (Samper)
- Random graph theory

- Simon's conjecture: The *d*-skeleton of the (n-1)-simplex is extendably shellable.
 - Coleman–Dochtermann–Geist–Oh: revlex order is a shelling order \implies shelling of Δ can be extended to shelling of the *d*-skeleton of the (n-1)-simplex.
- Quasi-matroidal classes (Samper)
- Random graph theory
- $\frac{5}{8}$ theorem:

- Simon's conjecture: The *d*-skeleton of the (n-1)-simplex is extendably shellable.
 - Coleman–Dochtermann–Geist–Oh: revlex order is a shelling order \implies shelling of Δ can be extended to shelling of the *d*-skeleton of the (n-1)-simplex.
- Quasi-matroidal classes (Samper)
- Random graph theory
- $\frac{5}{8}$ theorem:
 - If the probability that a pair of elements (chosen uniformly at random) in a finite group G commutes is $> \frac{5}{8}$, then G is abelian.

An order \prec on Δ is <u>shelling-compatible</u> if the \prec -lexicographic order on the facets of Δ is a shelling order.

An order \prec on Δ is shelling-compatible if the \prec -lexicographic order on the facets of Δ is a shelling order.

 $\mathfrak{L}(\Delta) \coloneqq \frac{1}{n!} \cdot \#\{$ s.c. vertex orders on $\Delta\}$

An order \prec on Δ is <u>shelling-compatible</u> if the \prec -lexicographic order on the facets of Δ is a shelling order.

 $\mathfrak{L}(\Delta) \coloneqq \frac{1}{n!} \cdot \# \{ \text{s.c. vertex orders on } \Delta \}$

An order \prec on Δ is <u>shelling-compatible</u> if the \prec -lexicographic order on the facets of Δ is a shelling order.

 $\mathfrak{L}(\Delta) \coloneqq \frac{1}{n!} \cdot \#\{$ s.c. vertex orders on $\Delta\}$

Björner's theorem: Δ is the independence complex of a matroid iff $\mathfrak{L}(\Delta) = 1$.

• $\mathfrak{L}(\Delta_1 * \Delta_2) = \mathfrak{L}(\Delta_1)\mathfrak{L}(\Delta_2)$, where * is simplicial join.

- $\mathfrak{L}(\Delta_1 * \Delta_2) = \mathfrak{L}(\Delta_1)\mathfrak{L}(\Delta_2)$, where * is simplicial join.
- Por any ε > 0 there exist complexes with 0 < 𝔅(Δ) < ε and complexes with 1 − ε < 𝔅(Δ) < 1.</p>

- $\mathfrak{L}(\Delta_1 * \Delta_2) = \mathfrak{L}(\Delta_1)\mathfrak{L}(\Delta_2)$, where * is simplicial join.
- Por any ε > 0 there exist complexes with 0 < ℒ(Δ) < ε and complexes with 1 − ε < ℒ(Δ) < 1.</p>

- $\mathfrak{L}(\Delta_1 * \Delta_2) = \mathfrak{L}(\Delta_1)\mathfrak{L}(\Delta_2)$, where * is simplicial join.
- 2 For any $\epsilon > 0$ there exist complexes with $0 < \mathfrak{L}(\Delta) < \epsilon$ and complexes with $1 \epsilon < \mathfrak{L}(\Delta) < 1$.
- **3** There exist shellable (in fact, vertex-decomposable) complexes with $\mathfrak{L}(\Delta) = 0$.
- There exist complexes which are not vertex-decomposable, but for which L(Δ) > 0.

- $\mathfrak{L}(\Delta_1 * \Delta_2) = \mathfrak{L}(\Delta_1)\mathfrak{L}(\Delta_2)$, where * is simplicial join.
- Por any ε > 0 there exist complexes with 0 < ℒ(Δ) < ε and complexes with 1 − ε < ℒ(Δ) < 1.</p>
- There exist complexes which are not vertex-decomposable, but for which L(Δ) > 0.
- **(**) If $\mathfrak{L}(\Delta) > 0$, the face poset of Δ is EL-shellable.

Proof Sketch(es)

 $\lim_{n\to\infty}\mathfrak{L}(\overline{K_n})=1$

Hachimori's complex: not v.d. but $\mathfrak{L} > 0$ http://infoshako.sk.tsukuba.ac.jp/~hachi/math/library/ nonextend_eng.html

Alexander Lazar (KTH)

Lex Shellability

<u>Q</u>: Suppose I select a *d*-complex Δ with vertex set [*n*] uniformly at random. What's $E(\mathfrak{L}(\Delta))$?

Note:

$$\begin{split} \mathrm{E}(\mathfrak{L}(\Delta)) &= \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \mathrm{E}\left(\mathbbm{1}(\sigma \text{ is s.c. for uniformly chosen } \Delta)\right) \\ &= \mathrm{P}(\mathrm{id} \text{ is s.c. for uniformly chosen } \Delta) \end{split}$$

<u>Q</u>: Suppose I select a *d*-complex Δ with vertex set [*n*] uniformly at random. What's $E(\mathfrak{L}(\Delta))$?

Note:

$$\begin{split} \mathrm{E}(\mathfrak{L}(\Delta)) &= \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \mathrm{E}\left(\mathbbm{1}(\sigma \text{ is s.c. for uniformly chosen } \Delta)\right) \\ &= \mathrm{P}(\mathrm{id} \text{ is s.c. for uniformly chosen } \Delta) \end{split}$$

In general, seems difficult (some experimental data for d = 2 and $n \le 6$).

Fact. Let \mathcal{G}_n be "the" uniformly-chosen graph on [n] (a.k.a. Erdös–Rényi graph with $p = \frac{1}{2}$). Then

 $\lim_{n\to\infty} \mathrm{P}(\mathrm{diam}(\mathcal{G}_n)\leq 2)=1.$

Fact. Let \mathcal{G}_n be "the" uniformly-chosen graph on [n] (a.k.a. Erdös–Rényi graph with $p = \frac{1}{2}$). Then

$$\lim_{n\to\infty} \mathrm{P}(\mathrm{diam}(\mathcal{G}_n)\leq 2)=1.$$

In particular, we then have

$$\lim_{n\to\infty} \mathrm{P}(\mathrm{id} \text{ is s.c. for } \mathcal{G}_n) = 1,$$

Fact. Let \mathcal{G}_n be "the" uniformly-chosen graph on [n] (a.k.a. Erdös–Rényi graph with $p = \frac{1}{2}$). Then

$$\lim_{n\to\infty} \mathrm{P}(\mathrm{diam}(\mathcal{G}_n)\leq 2)=1.$$

In particular, we then have

$$\lim_{n\to\infty} \mathrm{P}(\mathrm{id} \text{ is s.c. for } \mathcal{G}_n) = 1,$$

SO

Proposition (Doolittle–Goeckner–L.)

$$\lim_{n\to\infty} \mathrm{E}(\mathfrak{L}(\mathcal{G}_n)) = 1.$$

Definition (Samper)

A class ${\mathcal A}$ of ordered pure simplicial complexes is a quasi-matroidal class if

- ${\small \textcircled{0}} \hspace{0.1 cm} \text{Every ordered matroid belongs to } \mathcal{A}$
- ② If an ordered complex Δ_{\prec} belongs to \mathcal{A} and every other ordering \prec' of the vertices of Δ yields an ordered complex $\Delta_{\prec'}$ in \mathcal{A} , then Δ is a matroid independence complex
- **(**) Every pure shifted complex is in \mathcal{A}
- ${f O}$ ${\cal A}$ is closed under the following operations:
 - Join: If Δ_{\prec} and $\Gamma_{\prec'}$ are in \mathcal{A} , then $(\Delta * \Gamma)_{\prec''}$ is in \mathcal{A} , where \prec'' is any shuffle of the vertex orders \prec and \prec'
 - Oeletion: If Δ_≺ is in A and i_n is the largest vertex of Δ with respect to ≺, then (del_Δ(i_n))_≺ is in A
 - **§ Contraction:** If Δ_{\prec} is in \mathcal{A} , then $(\mathsf{lk}_{\Delta}(\sigma))_{\prec}$ is also in \mathcal{A} for all $\sigma \in \Delta$.

<u>LEX:</u> largest class of Δ_{\prec} where \prec is s.c. for Δ that is closed under joins, deletions, and contractions.

PURE: $\Delta_{\prec} \in \text{PURE}$ iff

- Δ is a simplex, or
- $(\Delta \setminus \{v\})_{\prec} \in PURE$ of the same dimension for v largest vertex and $lk_{\Delta}(v)_{\prec} \in PURE$ for all v.

Proposition (Doolittle–Goeckner–L.)

•
$$\Delta_{\prec} \in \text{PURE} \implies \prec \text{ s.c. for } \Delta$$
.

•
$$\Delta_{\prec} \in LEX \implies \prec s.c.$$
 for Δ .

•
$$\prec$$
 s.c. for $\Delta \implies \Delta_{\prec} \in LEX$.

Current Directions

- Analogs of £ for other matroid axioms?
- Nontrivial thresholds for $\mathfrak{L}(\Delta)$?
- $\mathfrak{L}(\Delta) > 0 \implies$ shellings of Δ extend to *d*-skeleton of (n-1)-simplex?

